If sin theta = m and tan theta = n, prove that 1\m square - 1\n square = 1
Answers
Answered by
0
Answer:
Given, m=tanθ+sinθ,n=tanθ−sinθ
We need to show m
2
−n
2
=4
mn
Taking L.H.S.,
m
2
−n
2
=(tanθ+sinθ)
2
−(tanθ−sinθ)
2
=tan
2
θ+sin
2
θ+2tanθ.sinθ−tan
2
θ−sin
2
θ+2tanθ.sinθ
=4tanθ.sinθ
Now, taking R.H.S.,
4
mn
=4
(tanθ+sinθ)(tanθ−sinθ)
=4
tan
2
θ−sin
2
θ
=4
cos
2
θ
sin
2
θ
−sin
2
θ
=4
cos
2
θ
sin
2
θ(1−cos
2
θ)
=4
sin
2
θ.tan
2
θ
=4tanθ.sinθ
Therefore, L.H.S. = R.H.S.
Similar questions
Math,
12 hours ago
Math,
23 hours ago
Political Science,
23 hours ago
Chemistry,
8 months ago
Math,
8 months ago