if sin theta = m²- n² / m²+n², the find trigonometric ratios
Answers
Answered by
21
Solution
→ sin∅ = (m² - n²)/(m² + n²)
Since sin∅ = Perpendicular/Hypotenuse.
→ H² = B² + P²
→ (m² + n²)² = B² + (m² - n²)²
→ B² = (m² + n²)² - (m² - n²)²
→ B² = (m²+n²+m²-n²)(m²+n²-m²+n²)
→ B = √[2m² × 2n²]
→ B = 2mn
- cos∅ = B/H
- sec∅ = H/B
- cosec∅ = H/P
- tan∅ = P/B
- cot∅ = B/P
→ cos∅ = 2mn/(m ²+ n²)
→ sec∅ = (m² + n²)/2mn
→ cosec∅ = (m² + n²)/(m² - n²)
→ tan∅ = (m² - n²)/2mn
→ cot∅ = 2mn/(m² - n²)
Answered by
27
Answer:
Step-by-step explanation:
Given that :
To Find :
Trigonometric ratios.
Solution :
Let us know that what are trigonometric ratios.
- Cos∅
- Sec∅
- Cosec∅
- Tan∅
- Cot∅
We know that :
Pythagoras theorem :
So,
We know that :
After putting values :
★ Extra Information :
Similar questions