If sin theta =m2-n2÷m2+n2 then mn (sectheta+tantheta)
Answers
Answered by
1
Answer:
cosФ = 2mn/m²+n²
Step-by-step explanation:
sinФ= m²-n²/m²+n²
as we know sinФ= perpendicular/hypotenuse
sinФ= p/h
⇒m²-n²/m²+n²= p/h
⇒p= m²-n² & h= m²+n²
now as we know that this triangle is always a right angle triangle,
so using Pythagoras theorem,
p²+b²=h²
⇒(m²-n²)²+b²= (m²+n²)²
⇒b²= (m²+n²)² - (m²-n²)²
⇒b²= m∧4 +n∧4 +2m²n² - m∧4 -n∧4 +2m²n²
⇒b²= 4m²n²
⇒b= √4m²n²
⇒b= 2mn
cosФ= b/h
=2mn/m²+n²
#Bug
Similar questions