Math, asked by yrajnish4866, 1 year ago

If sin theta minus cos theta equal to zero then find the value of sin power 4 theta + cos ki power 4 theta

Answers

Answered by JeanaShupp
61

Answer: \dfrac{1}{2}

Step-by-step explanation:

Given: sin \theta - cos \theta = 0

To find: sin^4 \theta + cos^ 4 \theta

As

sin\theta - cos \theta = 0 \Rightarrow sin\theta = cos\theta \Rightarrow  tan \theta= 1 \therefore \theta = \dfrac{\pi}{4}

Now

sin^4 \theta + cos^ 4 \theta\\\\= sin^4\dfrac{\pi}{4} + cos^ 4 \dfrac{\pi}{4} \\\\= (\dfrac{1}{\sqrt{2} } )^4+(\dfrac{1}{\sqrt{2} } )^4= \dfrac{1}{4} + \dfrac{1}{4} = \dfrac{1}{2}

Hence, the value of sin^4 \theta + cos^ 4 \theta is \dfrac{1}{2}

Answered by mysticd
39

 Given \: sin \theta - cos \theta = 0

 \implies sin\theta = cos\theta

 \implies \frac{sin\theta}{cos\theta} = \frac{cos\theta}{cos\theta}

 \implies tan \theta = 1

 \implies tan \theta = tan \:45\degree

 \implies \theta = 45\degree \: ---(1)

 Now , the \: value \: of \: sin^{4}\theta - cos^{4}\theta \\= sin^{4} \:45\degree + cos^{4} \:45\degree \\= \left( \frac{1}{\sqrt{2}}\right)^{4} + \left( \frac{1}{\sqrt{2}}\right)^{4}\\= \frac{1}{4} + \frac{1}{4} \\= \frac{2}{4} \\= \frac{1}{2}

Therefore.,

 \red {The \: value \: of \: sin^{4}\theta - cos^{4}\theta } \green {=  \frac{1}{2}}

•••♪

Similar questions