Math, asked by sethikunal1306, 1 year ago

if sin theta = n sin (theta + 2 alpha) then prove that tan ( theta + alpha) =1+n/1-n tan

Answers

Answered by MaheswariS
13

\textbf{Given:}

sin\,\theta=n\,sin(\theta+2\,\alpha)

\textbf{To prove:}

tan(\theta+\alpha)=\dfrac{1+n}{1-n}\,tan\alpha

\textbf{Solution:}

\text{Consider,}

\dfrac{1+n}{1-n}\,tan\alpha

=\dfrac{1+\frac{sin\,\theta}{sin(\theta+2\,\alpha)}}{1-\frac{sin\,\theta}{sin(\theta+2\,\alpha)}}\,tan\alpha

=\dfrac{sin(\theta+2\,\alpha)+sin\,\theta}{sin(\theta+2\,\alpha)-sin\,\theta}\,tan\alpha

\text{Using the identities}

\boxed{\bf\,sinC+sinD=2\,sin(\frac{C+D}{2})\,cos(\frac{C-D}{2})}

\boxed{\bf\,sinC-sinD=2\,cos(\frac{C+D}{2})\,sin(\frac{C-D}{2})}

=\dfrac{2\,sin(\theta+\alpha)\,cos\alpha}{2\,cos(\theta+\alpha)\,sin\alpha}\,tan\alpha

=\dfrac{sin(\theta+\alpha)\,cos\alpha}{cos(\theta+\alpha)\,sin\alpha}\,\dfrac{sin\alpha}{cos\alpha}

=\dfrac{sin(\theta+\alpha)}{cos(\theta+\alpha)}

=tan(\theta+\alpha)

\implies\boxed{\bf\,tan(\theta+\alpha)=\dfrac{1+n}{1-n}\,tan\alpha}

Find more:

If cos2x-cosx= sin4x - sinx(

where tan doesnot equal to 1) find value of cos3x - sin3x

https://brainly.in/question/19348427

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Answered by kirangarcha666
8

Answer:

This is your answer

Step-by-step explanation:

Hope it's help you

so mark me Brainlist

Attachments:
Similar questions