Math, asked by liya680, 1 day ago

if sin theta=p and cos theta=q then the value of p-2p^3/2q^3-q










do not spam
the correct answer will be marked brainliest ​

Answers

Answered by MysticSohamS
3

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  value \: of\\  \frac{p - 2p {}^{ 3} }{2q {}^{3} - q }  \\  \\ given \: that :  \\ sin \: θ = p \\ cos \: θ = q \\  \\ thus \: then \\ tan \: θ =  \frac{p}{q}  \\  \\ thus \: then \: considering \\   = \frac{p - 2p {}^{3} }{2q {}^{3}  - q}  \\  \\  =  \frac{p(1 - 2p {}^{2} )}{q(2q {}^{2}  - 1)}  \\  \\  = tan \: θ \times  \frac{1 - 2sin {}^{2} \:  θ}{2cos {}^{2} \: θ - 1 }   \\  \\  = tan \: θ \times  \frac{(1 - sin { }^{2}  \: θ) - sin {}^{2} \: θ }{cos {}^{2}  \:θ + (cos {}^{2} θ - 1) }  \\  \\  = tan \: θ \times  \frac{cos {}^{2} \: θ - sin {}^{2}  θ}{cos {}^{2}θ + ( - sin { }^{2}  \: θ) }  \\  \\  = tan \: θ \times  \frac{cos {}^{2} \: θ - sin {}^{2}  θ}{cos {}^{2} θ - sin { }^{2}θ }  \\  \\  = tan \: θ

Similar questions