Math, asked by siddhanthibhaskerbha, 1 year ago

If sin theta=p/q find the value of all trignometric ratios

Answers

Answered by TheLostMonk
1
let , p = perpendicular , q = hypotenuse

r = base

if sinA = p / q

then , => cosecA = 1/ sinA = q / p

= > cosA = √ ( 1 - sin^2 A )

=> cosA = √ ( 1 - p^2 / q^2 )

=> cosA = √{ ( q^2 - p^2 ) / q^2 }

=> cosA = √( r^2 / q^2 )

=> cosA = r / q

=> Sec A = 1 / cosA = 1 / r / q

=> Sec A = q / r

=> tan A = sinA / cosA

=> = ( p / q ) / ( r / q )

=> = p / r

so , Tan A = p / r

=> Cot A = 1/ tanA

=> Cot A = 1 / ( p / r )

=> Cot A = r / q

hence , values of all trigonometric ratios are,

sin A = p / q , cos A = r / q , tan A = p / r

cot A = r / p and cosecA = q / p .
__________________________
【 hope helps 】
_________________________
Answered by Laxmipriyas007
0

Answer:

Given Sin( \theta )= \frac{p}{q} .-------------------------------------------------( 1 )

The formula of    sin(\theta)=\frac{Opposite  side}{Hypotenuse  side}  -----------------( 2 )

To find : cosec ( \theta ), cos( \theta ), sec( \theta ), tan( \theta ) and cot( \theta ).

From equations ( 1 ) and ( 2 ),

Opposite side = p,

Hypotenuse side = q.

cosec( \theta ) =\frac{1}{sin(\theta)} =\frac{q}{p}.

Now, using the formula  

                           sin^2 (\theta)+cos^2(\theta)=1,

                           cos(\theta)=\sqrt{1-sin^2(\theta)},

Substituting ( 1 ), we get

                           cos(\theta)=\sqrt{1-\frac{p^2}{q^2} },

                                      =\sqrt{\frac{q^2-p^2}{q^2} } ,

                                      =\sqrt{\frac{z^2}{q^2} } , where z^2=q^2-p^2.

Therefore, cos(\theta)=\frac{z}{q}.---------------------------------------------( 3 )

sec( \theta ) =\frac{1}{cos(\theta)} =\frac{1}{\frac{z}{q}}=\frac{q}{z} .

tan(\theta)=\frac{sin(\theta)}{cos(\theta)}\\

Using ( 1 ) and ( 3 ),

tan(\theta)=\frac{\frac{p}{q}}{\frac{z}{q}}=\frac{p}{z} .

Therefore, tan(\theta)=\frac{p}{z} .

cot(\theta)=\frac{1}{tan(\theta)}=\frac{1}{\frac{p}{z}},

         =\frac{z}{p}

Hence, values of all trigonometric ratios are

cosec( \theta ) =\frac{q}{p}, cos(\theta)=\frac{z}{q}, sec( \theta ) =\frac{q}{z}, tan(\theta)=\frac{p}{z}, cot(\theta)=\frac{z}{p}.

                         

                           

             

Similar questions