If sin theta=p/q find the value of all trignometric ratios
Answers
Answered by
1
let , p = perpendicular , q = hypotenuse
r = base
if sinA = p / q
then , => cosecA = 1/ sinA = q / p
= > cosA = √ ( 1 - sin^2 A )
=> cosA = √ ( 1 - p^2 / q^2 )
=> cosA = √{ ( q^2 - p^2 ) / q^2 }
=> cosA = √( r^2 / q^2 )
=> cosA = r / q
=> Sec A = 1 / cosA = 1 / r / q
=> Sec A = q / r
=> tan A = sinA / cosA
=> = ( p / q ) / ( r / q )
=> = p / r
so , Tan A = p / r
=> Cot A = 1/ tanA
=> Cot A = 1 / ( p / r )
=> Cot A = r / q
hence , values of all trigonometric ratios are,
sin A = p / q , cos A = r / q , tan A = p / r
cot A = r / p and cosecA = q / p .
__________________________
【 hope helps 】
_________________________
r = base
if sinA = p / q
then , => cosecA = 1/ sinA = q / p
= > cosA = √ ( 1 - sin^2 A )
=> cosA = √ ( 1 - p^2 / q^2 )
=> cosA = √{ ( q^2 - p^2 ) / q^2 }
=> cosA = √( r^2 / q^2 )
=> cosA = r / q
=> Sec A = 1 / cosA = 1 / r / q
=> Sec A = q / r
=> tan A = sinA / cosA
=> = ( p / q ) / ( r / q )
=> = p / r
so , Tan A = p / r
=> Cot A = 1/ tanA
=> Cot A = 1 / ( p / r )
=> Cot A = r / q
hence , values of all trigonometric ratios are,
sin A = p / q , cos A = r / q , tan A = p / r
cot A = r / p and cosecA = q / p .
__________________________
【 hope helps 】
_________________________
Answered by
0
Answer:
Given Sin( )= .-------------------------------------------------( 1 )
The formula of -----------------( 2 )
To find : cosec ( ), cos( ), sec( ), tan( ) and cot( ).
From equations ( 1 ) and ( 2 ),
Opposite side = p,
Hypotenuse side = q.
.
Now, using the formula
,
Substituting ( 1 ), we get
,
,
, where .
Therefore, .---------------------------------------------( 3 )
.
Using ( 1 ) and ( 3 ),
Therefore,
,
Hence, values of all trigonometric ratios are
, , , , .
Similar questions