Math, asked by Manoabi, 9 months ago

if sin theta = p/q then value of tan theta+sec theta is?

Answers

Answered by educatorvs
11

Step-by-step explanation:

You can do also by this method if you don't learnt formulas

Attachments:
Answered by Agastya0606
2

Given:

sin θ = p/q

To find:

The value of tan θ + sec θ.

Solution:

As we know that in a right-angled triangle ABC where angle B = 90°, angle C = θ, AC = hypotenuse, BC = base and AB = height,

the sin θ is

 =  \frac{height}{hypotenuse}

 =  \frac{AB}{AC}

Also,

cos  \: θ =  \frac{base}{hypotenuse}  =  \frac{BC}{AC}

tan \: θ =   \frac{sin \:θ  }{cos  \: θ }

sec \: θ =  \frac{1}{Cos \:  θ }

and,

From Pythagoras theorem,

 {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

Now, as given sin θ = p/q,

So,

cos \:  θ =   \frac{\sqrt{ {q}^{2} -  {p}^{2}  } }{q}

sec \: θ =  \frac{1}{ \frac{ \sqrt{ {q}^{2} -  {p}^{2}  } }{q} }  =  \frac{q}{ \sqrt{ {q}^{2}  -  {p}^{2} } }

tan \: θ =  \frac{p}{ \sqrt{ {q}^{2}  -  {p}^{2} }  }

( using Pythagoras theorem)

Hence,

tan \:  θ + sec \:  θ \:   =

 = \frac{p}{ \sqrt{ {q}^{2}  -  {p}^{2} }  }  +  \frac{q}{ \sqrt{ {q}^{2}  -  {p}^{2} } }

  = \frac{p  \: + \:  q}{ \sqrt{ {q}^{2}  -  {p}^{2} } }

Hence, the value of tan θ + sec θ is

  = \frac{p  \: + \:  q}{ \sqrt{ {q}^{2}  -  {p}^{2} } }

Similar questions