Math, asked by rohitkunnathrocks, 2 days ago

if sin theta = p/q then value of tan theta+sec theta is?
Identity answers only

Answers

Answered by blogjsv
4

Answer: Check the picture

Attachments:
Answered by SharadSangha
1

Given,

Sinθ = \frac{p}{q}

To find,

Tanθ + Secθ

Solution,

From the given value of Sinθ, we have

The hypotenuse of the triangle = q.

The height of the triangle = p.

By using Pythagoras theorem,

       Base^{2} + p^{2} = q^{2}

        Base^{2} = q^{2} - p^{2}

       Base = \sqrt{ q^{2} - p^{2} }

Now, using the formula

(Secθ)^{2} - (Tanθ)^{2} = 1

This can be further factorized to,

(Sexθ - Tanθ)(Secθ + Tanθ) = 1  --------eq(1)

Secθ = 1/Cosθ and Tanθ = Sinθ/Cosθ

Substituting the value in eq(1)

(1/Cosθ - Sinθ/Cosθ)(Secθ + Tanθ) = 1

Calculating the value of (1/Cosθ - Sinθ/Cosθ),

= \frac{q}{\sqrt{ q^{2} - p^{2} }} - \frac{p}{\sqrt{ q^{2} - p^{2} }} \\= \frac{p - q}{\sqrt{ q^{2} - p^{2} }} }

Substituting the value in the equation above, we get the required value of Tanθ + Secθ.

Tanθ + Secθ = \frac{\sqrt{q^{2}  - p^{2} }}{ q - p}

Therefore, value of Tanθ + Secθ is \frac{\sqrt{q^{2}  - p^{2} }}{ q - p}.

         

Similar questions