If , sin theta + root over 3 cos theta then the maximum value of y is
Answers
Step-by-step explanation:
y =2/(sinθ + √3cosθ)
for solving this question, you should understand one thing
-\bf{\sqrt{a^2+b^2}} ≤ asinx + bcosx ≤\bf{\sqrt{a^2+b^2}}
So, -√(1 + √3²) ≤ (sinθ + √3cosθ) ≤ √(1 + √3²)
-2 ≤ (sinθ + √3cosθ) ≤ 2
So, minimum value of (sinθ + √3cosθ) = -2
Maximum value of (sinθ + √3cosθ) = 2
For getting minimum value of y , we have to use maximum value of (sinθ + √3cosθ) .
So, minimum value of y = 2/-2 = 1
Mark as Brainlist
Answer:
The maximum value of y = 2.
Step-by-step explanation:
Given y = sinθ + √3cosθ
Multiplying and dividing by 2 on RHS.
⇒y = 2 [1/2 sinθ + √3/2 cosθ ]
⇒y = 2[cos60° sinθ + sin60°cosθ ]
It is in the form of cosA sinB + sinA cosB = sin(A + B)
so, cos60° sinθ + sin60° cosθ = sin(θ + 60°)
⇒y = 2sin(θ + 60°)
we know the maximum value of the sine function is 1.
then maximum value of sin(θ + 60°) = 1
⇒ y = 2×1 = 2
Therefore the maximum value of y = 2.