Math, asked by dtpplb8, 6 hours ago

If sin theta sec theta =−1 and theta lies in the second quadrant, find sin theta and sec theta​

Answers

Answered by Choudharipawan123456
0

Given that :- sin θ sec θ = -1

and θ lies in the second quadrant,

As we have to find sinθ and secθ

Therefore,

sin^{2}θ =cos^{2}θ

sin^{2}θ =1-sin^{2}θ

⇒  sin^{2}θ = \frac{1}{\sqrt{2} }

sinθ = ±\frac{1}{\sqrt{2} }

As, the θ lies in the quadrant second,

⇒ θ = \frac{3\pi }{4}

⇒  sinθ =sin \frac{3\pi }{4}

            =\frac{1}{\sqrt{2} }

sec θ =sec \frac{3\pi }{4}

            =-\sqrt{2}

Answered by amitnrw
0

Given : sinθsecθ= -1   and θ lies in the second quadrant

To Find : sinθ and  secθ

Solution:

sinθsecθ= -1

=> sinθ/cosθ= -1

=> tanθ= -1

=> θ = 135° as  θ lies in the second quadrant

Sin 135°  = 1/√2

cos 135°  = -1/√2

=> sec  135°  = - √2

sinθ  = 1/√2 and  secθ =  - √2

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions