If sin theta sec theta =−1 and theta lies in the second quadrant, find sin theta and sec theta
Answers
Given that :- θ θ
and θ lies in the second quadrant,
As we have to find θ and θ
Therefore,
⇒ θ θ
⇒ θ θ
⇒ θ =
⇒ θ = ±
As, the θ lies in the quadrant second,
⇒ θ =
⇒ θ
⇒ θ
Given : sinθsecθ= -1 and θ lies in the second quadrant
To Find : sinθ and secθ
Solution:
sinθsecθ= -1
=> sinθ/cosθ= -1
=> tanθ= -1
=> θ = 135° as θ lies in the second quadrant
Sin 135° = 1/√2
cos 135° = -1/√2
=> sec 135° = - √2
sinθ = 1/√2 and secθ = - √2
Learn More:
Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ
brainly.in/question/10480120
Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...
brainly.in/question/22239477
Maximum value of sin(cos(tanx)) is(1) sint (2)
brainly.in/question/11761816
evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...
brainly.in/question/2769339