Math, asked by iandu5143, 11 months ago

If sin theta+sin^2theta, prove that cos^2theta + cos^4=1

Answers

Answered by Shailesh183816
8

Answer :-

______________________

• Given :-

sinθ + sin²θ = 1

• To find :-

The value of : cos²θ + cos⁴θ

• Salutation :-

sinθ + sin²θ = 1

sinθ = 1 - sin²θ

sinθ = cos²θ ---------- ( i )

[ • As sin²θ + cos²θ = 1

So , sin²θ = 1 - cos²θ ]

★ Method - 1

sinθ = cos²θ

( sinθ )² = ( cos²θ )²

sin²θ = cos⁴θ

1 - cos²θ = cos⁴θ

cos⁴θ + cos²θ = 1 [ ★ Required answer ]

__________________

★ Method - 2

cos²θ + cos⁴θ

= sinθ + ( sinθ )²

[ • Putting the value of cos²θ = sinθ ]

= sinθ + sin²θ

= 1 [ • Given , sinθ + sin²θ = 1 ]

• So finally ,

[ cos²θ + cos⁴θ = 1 ]

_________

Answered by divya7575
3

Step-by-step explanation:

hope it's useful.........

Attachments:
Similar questions