If sin theta+sin^2theta, prove that cos^2theta + cos^4=1
Answers
Answered by
8
Answer :-
______________________
• Given :-
sinθ + sin²θ = 1
• To find :-
The value of : cos²θ + cos⁴θ
• Salutation :-
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
_________
Answered by
3
Step-by-step explanation:
hope it's useful.........
Attachments:
Similar questions