If, sin theta+sin phi=a, cos theta+cos phi=b, then show that, tan (theta - phi)/2 = plus/minus sqrt((4 - a ^ 2 - b ^ 2)/(a ^ 2 + b ^ 2))
Answers
sinθ+sinϕ=a ________ (1) cosθ+cosϕ=b _______ (2)
(1)
2 +(2) 2
⇒a 2 +b 2
=sin 2 θ+sin
2 ϕ+2sinθsinϕ+cos 2 θ+cos 2
ϕ+2cosθcosϕ
(a 2 +b 2 )=1+1+2[sinθsinϕ+cosθcosϕ](a 2 +b 2 )=2[1+cos(θ−ϕ)]2a 2 +b 2
=2cos 2 ( 2θ−ϕ )
⇒cos 2 ( 2θ−ϕ )= 4a 2 +b
2 ______ (2)tan( 2θ−ϕ )= cos 2 ( 2θ−ϕ )
1−cos 2 ( 2θ−ϕ )
= ( 4a 2 +b 2 )1−( 4a 2 +b 2 )
= a 2 +b 2 4−a 2 −b 2
∴tan( 2θ−ϕ )= a 2 +b 2 4−a 2 −b 2
Answer:
Step-by-step explanation:
sinθ+sinϕ=a ________ (1) cosθ+cosϕ=b _______ (2)
(1)
2 +(2) 2
⇒a 2 +b 2
=sin 2 θ+sin
2 ϕ+2sinθsinϕ+cos 2 θ+cos 2
ϕ+2cosθcosϕ
(a 2 +b 2 )=1+1+2[sinθsinϕ+cosθcosϕ](a 2 +b 2 )=2[1+cos(θ−ϕ)]2a 2 +b 2
=2cos 2 ( 2θ−ϕ )
⇒cos 2 ( 2θ−ϕ )= 4a 2 +b
2 ______ (2)tan( 2θ−ϕ )= cos 2 ( 2θ−ϕ )
1−cos 2 ( 2θ−ϕ )
= ( 4a 2 +b 2 )1−( 4a 2 +b 2 )
= a 2 +b 2 4−a 2 −b 2
∴tan( 2θ−ϕ )= a 2 +b 2 4−a