Math, asked by bakopatel, 1 year ago

if (sin theta)/x=(cos theta)/y then (sin theta) - (cos theta)=?

Answers

Answered by anu24239
1

  \frac{ \sin( \alpha ) }{x}  =  \frac{ \cos( \alpha ) }{y}  \\ take \: square \: on \: both \: side \\  \\  \frac{ sin^{2}{ \alpha } }{ {x}^{2} }  =  \frac{cos^{2}{ \alpha } }{ {y}^{2} }  \\  \\ we \: know \: that \\  \: sin^{2}  \alpha  = 1 - cos^{2}  \alpha  \\  \\ put \: the \: value \: in \: upper \: equation \\  \\ 1 -cos^{2}  \alpha  =  {x}^{2}  \frac{cos^{2} \alpha  }{  {y}^{2}  }  \\  \\ adust \: the \: cos^{2}  \alpha  \\  \\ 1 = cos^{2}  \alpha ( 1 +  \frac{ {x}^{2} }{ {y}^{2} } ) \\  \\ 1 = cos^{2}  \alpha ( \frac{ {x}^{2} +  {y}^{2}  }{  {y}^{2} } ) \\  \\ cos^{2} \alpha  =  \frac{ {y}^{2} }{ {x}^{2} +  {y}^{2}  } .......eq(1)  \\  \\ cos  \alpha  =  \frac{y}{ \sqrt{ {x}^{2} +  {y}^{2}  } } .....eq(2) \\  \\ from \: eq(1) \: we \: get \\ sin^{2}  \alpha  =  \frac{ {x}^{2} }{ {x}^{2} +  {y}^{2}  }  \\  \\ sin \:  \alpha  =  \frac{x}{ \sqrt{ {x}^{2}  + {y}^{2}  } } .........eq(3) \\  \\ subtract \: eq(2) \: from \: eq(3) \\  \\  \sin( \alpha )  -  \cos( \alpha )  =  \frac{x - y}{ \sqrt{ {x}^{2} +  {y}^{2}  } }

Similar questions