Math, asked by Tannuverma, 1 year ago

if sin theta = x, write the value of cot theta

Answers

Answered by MaheswariS
10

\textbf{Given:}

sin\theta=x

\textbf{To find:}

\text{The value of $cot\theta$}

\textbf{Solution:}

\text{We know that,}

\bf\,sin^2\theta+cos^2\theta=1

\implies\,cos^2\theta=1-sin^2\theta

\implies\,cos^2\theta=1-x^2

\implies\,cos\theta=\sqrt{1-x^2}

\text{Now,}

cot\theta

=\dfrac{cos\theta}{sin\theta}

=\dfrac{\sqrt{1-x^2}}{x}

\therefore\textbf{The value of $\bf\,cot\,\theta$ is $\bf\dfrac{\sqrt{1-x^2}}{x}$}

Find more:

If 5 sin theta -12 cos theta =0 then find the value of cosec theta and cot theta . here theta is an acute angle

https://brainly.in/question/2660406

If tan theta +cot theta=4,find value of tan4theta+cot4theta.

https://brainly.in/question/8129767

Answered by mysticd
3

 Given \: sin \theta = x \: --(1)

 Value \: of \: cot \:theta \\= \frac{cos\theta}{sin \theta } \\= \frac{\sqrt{cos^{2} \theta}}{sin \theta}\\= \frac{ \sqrt{1 - sin^{2} \theta }}{sin \theta }

 \blue {( By \: Trigonometric \: Identity )}

 \boxed{ \pink { cos^{2} \theta = 1 - sin^{2} \theta }}

 = \frac{ \sqrt{ 1 - x^{2}}}{x} \: [ From \: (1) ]

Therefore.,

 \red { Value \: of \: cot \:theta} \green {= \frac{ \sqrt{ 1 - x^{2}}}{x} }

•••♪

Similar questions