Math, asked by saralavarma222, 9 months ago

if sin thete = x-y/x+y, then tan(pi/4+theta/2) may be equal to​

Answers

Answered by senboni123456
2

Step-by-step explanation:

Given,

 \sin( \alpha )  =  \frac{x - y}{x + y}

Now,

 \tan( \frac{\pi}{4} +  \frac{ \alpha }{2}  ) =  \frac{ \tan( \frac{\pi}{4} ) +  \tan( \frac{ \alpha }{2} )  }{1 -  \tan( \frac{\pi}{4} ) \tan( \frac{ \alpha }{2} )  }

 =  \tan( \frac{ \pi}{4} +  \frac{ \alpha }{2}  )  =  \frac{1 +  \tan (\frac{ \alpha }{2})  }{1 -  \tan( \frac{ \alpha }{2} ) }

Now, break tan into sin and cos and take lcm

 \tan( \frac{\pi}{4}  +  \frac{ \alpha }{2} )  =  \frac{ \cos( \frac{ \alpha }{2}  ) +  \sin(  \frac{ \alpha }{2}  )  }{ \cos( \frac{ \alpha }{2}  ) -  \sin( \frac{ \alpha }{2}  )  }

Multiplyng ( cos α+ sin α) in numerator and denominator, we get,

 \tan( \frac{\pi}{4} +   \frac{ \alpha }{2}  )  =  \frac{1}{ { (\cos(  \frac{ \alpha }{2}  ) })^{2}  - ( { \sin( \frac{ \alpha }{2} ) })^{2} }

 \tan( \frac{\pi}{4} + \frac{ \alpha }{2}  )  =  \frac{1}{ \cos( \alpha ) }

As, (cos² θ-sin²θ)=cos 2θ

Now,

 \tan( \frac{\pi}{4}  +  \frac{ \alpha }{2} )  =  \frac{1}{ \sqrt{1 - ( \sin( \alpha ))^{2}  } }  =  \frac{1}{ \sqrt{1 -  \frac{(x - y) ^{2} }{ ({x + y})^{2} } } }

Taking lcm and symplifying, we get,

  \tan( \frac{\pi}{4} +  \frac{ \alpha }{2}  )  = \frac{x + y}{2 \sqrt{xy} }

Hope, this help you!

Similar questions