Math, asked by harshitarya492, 2 months ago

if sin theth a= x and sec thetha = y then find the value of cot thetha

Answers

Answered by Intelligentcat
7

Answer:

It is stated that sin θ A is x whereas the sec θ A is y. So, from this we have to find out the value of cot θ A.

So, For that we are going to use some trigonometry function.

We know that,

{\bullet \: \:{\boxed {\bf {Tan \: \theta = \dfrac{Sin \: \theta}{Cos \: \theta}}}}} \\ \\

Whereas, cos is it's reciprocal i.e,

{\bullet \: \: {\boxed{\bf {Cot \: \theta = \dfrac{Cos \: \theta}{Sin \: \theta}}}}} \\ \\

Also,

{\bullet \: \: {\boxed{\bf {Cos \: \theta = \dfrac{1}{Sec \: \theta}}}}} \\ \\

Let's solve it :

From Given :-

  • Sin θ A = x

  • Sec θ A = y

Then ,

{\bullet \: \: {\bf {Cos \: \theta A = \dfrac{1}{y}}}} \\ \\

Plugging the respective values in it, we get :

\dashrightarrow\:\:\sf Cot \:  \theta = \dfrac{Cos \: \theta}{Sin \: \theta} \\ \\

\dashrightarrow\:\:\sf Cot \: \theta = \dfrac{ \dfrac{1}{y}}{x} \\ \\

\dashrightarrow\:\:\sf Cot \: \theta = \dfrac{1}{y} \times x \\ \\

\dashrightarrow\:\:\sf Cot \: \theta = \dfrac{1}{yx} \\ \\

Hence,

\dashrightarrow\:\: \underline{ \boxed{\sf Required \: answer : {\red{\dfrac{1}{xy}}}}} \\

_____________________

Related Data :

  • Sin A = 1/Cosec A

  • Cos A = 1/Sec A

  • Tan = 1/ Cot A

  • Cot A = 1/Tan A

  • Cosec A = 1/Sin A

  • Tan A = Sin A/Cos A

  • Cot A = Cos A/Sin A

Trigonometry Identities :

• sin² A + cos² A = 1

• sec² A = 1 + tan² A

• cosec² A = 1 + cot² A

Answered by BrainlyRish
4

Given : The \sin\theta is x & \sec\theta is y .

Exigency to find : The Value of \cot\theta

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\dag\:\:\it{Given\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ \sin \theta = x \:\&\:\sec\theta =y   }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Finding Value of \cot\theta :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ \cos \theta = \dfrac{1}{\sec\theta } }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here \sec\theta = y .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf \cos \theta = \dfrac{1}{y} \\\\

⠀⠀⠀⠀⠀&

\dag\:\:\it{\:We\:know\:that\:to\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{ \cot \theta = \dfrac{\cos\theta}{\sin\theta } }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here \sin\theta is x & \cos\theta\:\:is\:\:\dfrac{1}{y}

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf \cot \theta = \dfrac{\dfrac{1}{y}}{x} \\\\

\qquad \longmapsto \sf \cot \theta = \dfrac{1}{x\times y } \\\\

\qquad \longmapsto \bf\bigg( \cot \theta = \dfrac{1}{xy } \bigg) \qquad \longrightarrow \:\:Required \:AnswEr \:\\\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The\:Value \:of\:\cot\theta \:is\:\bf{\dfrac{1}{xy}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Some Basic Formulas of Trigonometry is given by :

\boxed { \begin{array}{c c} \\ \dag \qquad \large {\underline {\bf{ Some \:Basic\:Formulas \:For\:Trigonometry \::}}}\\\\ \sf{ In \:a \:Right \:Angled \: Triangle-:} \\\\ \sf {\star Sin \theta = \dfrac{1}{Cosec \theta }} \\\\ \sf{ \star \cos \theta = \dfrac{ 1 }{Sec\theta}}\\\\ \sf{\star \tan \theta = \dfrac{1}{Cot \theta }}\\\\ \sf{\star \cot \theta = \dfrac{1}{Tan\theta}} \\\\ \sf {\star Sec \theta = \dfrac{1}{Cos \theta }} \\\\ \sf{\star \cosec \theta = \dfrac{1}{Sin \theta }}\\\\ \sf{\star \cot \theta = \dfrac{Cos\theta}{Sin\theta}} \end{array}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions