Math, asked by NimbarkAbhi, 8 months ago

If sin thita=11/15 find the value of other trigonometric ratio thita ​

Answers

Answered by Mora22
4

Answer:

 \sin(Ѳ)  =  \frac{11}{15}

it \: is \: a \: right \: angled \: triangle \: so \: other \: side

 =  \sqrt{ {15}^{2} -  {11}^{2}  }

since \: 15 \: is \: hypotenuse \:

other \: side =  \sqrt{225 - 121} =  \sqrt{104}

so \:  \cos(Ѳ)  =   \frac{ \sqrt{104} }{15}

 \tan(Ѳ)  =  \frac{11}{ \sqrt{104} }

 \cot(Ѳ)  =  \frac{ \sqrt{104} }{11}

 \sec(Ѳ)  =  \frac{15}{ \sqrt{104} }

 \csc(Ѳ)  =   \frac{15}{11}

Answered by deviv8390
8

Answer:

Step-by-step explanation:

We have, sin θ = 11/15 ………. (1)

By definition,

sin θ = Perpendicular/ Hypotenuse …. (2)

On Comparing eq. (1) and (2), we get;

Perpendicular = 11 and Hypotenuse= 15

Now, using Pythagoras theorem in Δ ABC

AC2 = AB2 + BC2

Putting the value of perpendicular (BC) and hypotenuse (AC) to get the base (AB), we have

152 = AB2 +112

AB2 = 152 – 112

AB2 = 225 – 121

AB2 = 104

AB = √104

AB= √ (2×2×2×13)

AB= 2√(2×13)

AB= 2√26

Hence, Base = 2√26

By definition,

cos θ = Base/Hypotenuse

∴ cosθ = 2√26/ 15

And, cosec θ = 1/sin θ

∴ cosec θ = 15/11

And, secθ = Hypotenuse/Base

∴ secθ =15/ 2√26

And, tan θ = Perpendicular/Base

∴ tanθ =11/ 2√26

And, cot θ = Base/Perpendicular

∴ cotθ =2√26/ 11

Similar questions