If sin thita=11/15 find the value of other trigonometric ratio thita
Answers
Answered by
4
Answer:
Answered by
8
Answer:
Step-by-step explanation:
We have, sin θ = 11/15 ………. (1)
By definition,
sin θ = Perpendicular/ Hypotenuse …. (2)
On Comparing eq. (1) and (2), we get;
Perpendicular = 11 and Hypotenuse= 15
Now, using Pythagoras theorem in Δ ABC
AC2 = AB2 + BC2
Putting the value of perpendicular (BC) and hypotenuse (AC) to get the base (AB), we have
152 = AB2 +112
AB2 = 152 – 112
AB2 = 225 – 121
AB2 = 104
AB = √104
AB= √ (2×2×2×13)
AB= 2√(2×13)
AB= 2√26
Hence, Base = 2√26
By definition,
cos θ = Base/Hypotenuse
∴ cosθ = 2√26/ 15
And, cosec θ = 1/sin θ
∴ cosec θ = 15/11
And, secθ = Hypotenuse/Base
∴ secθ =15/ 2√26
And, tan θ = Perpendicular/Base
∴ tanθ =11/ 2√26
And, cot θ = Base/Perpendicular
∴ cotθ =2√26/ 11
Similar questions