If sin thita=5/13 then find:(a)cos thita (b) tan thita (c)cosec thita (d)tan thita+1/cos thita
Answers
Step-by-step explanation:
Given:-
Sinθ = 5/13
To find:-
Find the following
1)Cos θ
2)Tan θ
3)Cosec θ
4)tan θ + 1/ cos θ
Solution:-
Given that :
Sin θ = 5/13
Sin^2 θ = 25/169
We know that Sin^2θ + Cos^2θ = 1
=>(25/169)+ Cos^2 θ = 1
=>Cos^2 θ = 1-(25/169)
=>Cos^2 θ = (169-25)/169
=>Cos^2 θ = 144/169
=>Cos θ = √(144/169)
=>Cos θ = 12/13
Therefore Cos θ = 12/13
1) Cos θ = 12/13
2) we know that
Tan θ = Sin θ/ Cos θ
=> Tan θ = (5/13)/(12/13)
Tan θ = 5/12
3)We know that
Cosec A = 1/ Sin A
Cosec θ = 1/ Sin θ
=>Cosec θ = 1/(5/13)
Cosec θ =13/5
4)Tan θ + 1/ Cos θ
=>(5/12)+1/(12/13)
=>(5/12)+(13/12)
=>(5+13)/12
=>18/12
=>3/2
Tan θ + 1/ Cos θ = 3/2
Answer:-
1)Cos θ = 12/13
2)Tan θ = 5/12
3)Cosec θ =13/5
4)Tan θ + 1/ Cos θ = 3/2
Used formulae:-
- Sin^2θ + Cos^2θ = 1
- Tan θ = Sin θ/ Cos θ
- Cosec θ = 1/ Sin θ
Answer:
(a) 12/13
(b) 5/12
(c) 13/5
(d) 209/156
Step-by-step explanation :
I attached a page , hope it helps you :)