Math, asked by anshikaverma80, 4 months ago

if sin thitha = a/b then prove that (sec thitha + tan thitha ) = root b+a/b-a

Answers

Answered by ravi2303kumar
0

sin \theta  = \frac{a}{b}    ,  to prove (sec\theta+tan\theta) = \sqrt{\frac{b+a}{b-a} }

Step-by-step explanation:

Given, sin \theta  = \frac{a}{b}  

=> opposite side = a  and hypotenuse = b

then by pythagorous theorem ,

=> b² = a² + x²    , where x is the adjacent side

so, x = \sqrt{b^2-a^2}

=> sec\theta+tan\theta  = \frac{b}{\sqrt{b^2-a^2}} + \frac{a}{\sqrt{b^2-a^2}}       , as sec\theta = hyp/adj  & tan\theta = opp/adj

=> sec\theta+tan\theta  = \frac{b+a}{\sqrt{b^2-a^2}}

=> sec\theta+tan\theta  = \frac{b+a}{\sqrt{(b+a)(b-a)}}

=> sec\theta+tan\theta  = \frac{\sqrt{b+a}*\sqrt{b+a} }{\sqrt{b+a}*\sqrt{b-a}}

=> sec\theta+tan\theta  = \frac{\sqrt{b+a} }{\sqrt{b-a}}

=> sec\theta+tan\theta  = \sqrt{\frac{b+a}{b-a} }

and hence we arrived at the equation, that we wanted to prove.

Hence proved.

Similar questions