Math, asked by kavi4872, 10 months ago

if sin tita + cos tita=p and sec tita + cosec tita =q then prove that q(p^2-1)=2p​

Answers

Answered by ariyan256321
0

Step-by-step explanation:

L.H.S q(p²-1)= [(sin tita + cos tita)²-1] (sec tita + cosec tita) = 2sin tita cos tita (1/cos tita + 1/cosec tita) =2(sin tita + cos tita)

R. H. S 2p= 2(sin tita + cos tita)

that is, L. H. S= R. H. S (proved)

Answered by Vikassandeep
0

Answer:

Taking L.H.S

=q(p^2-1)

=(secA+cosecA){(sinA+cosA)^2-1}

=(secA+cosecA){sin^2A+cos^2A+2sinA.cosA-1}

=(secA+cosecA)(1+2sinA.cosA-1) (USING

sin^2A+cos^2A=1)

=(secA+cosecA)(2sinA.cosA)

=(1/cosA+1/sinA)(2sinA.cosA)

Taking L.CM

=(cosA+sinA)(2sinA.cosA)/sinA.cosA

=(cosA+sinA)(2)

=2(sinA+cosA)

=2p (given that sinA+cosA=p)

Similar questions