.If sin x = 1/ 2 then find the value of 1−tanx/1+tan x .
Answers
Answered by
0
Answer:
tan(pie/4-x
Step-by-step explanation:
because 1-tanx/1+tanx =tan ( pie/4-x
Answered by
0
Since sin x = 1/2 -> x = 30°....
so tan x = 1/√3 (tan 30° = 1/√3)
-> (1 - 1/√3) / (1 + 1/√3)
-> (√3 - 1 /√3) / (√3 + 1/√3) LCM
-> (√3-1 / √3) * (√3 /√3 + 1)
-> √3 - 1 / √3 + 1
Rationalise the denominator.
(√3 - 1 / √3 + 1) * (√3 - 1 / √3 - 1)
(√3-1)² / 3-1
(3- 2√3 + 1) / 2
4 -2√3 / 2
4/2 - 2√3/ 2
= 2 -√3
Similar questions