If sin (x-20)°= cos (3x - 10°, then find the value of x.
Answers
Answered by
0
Answer:
Step-by-step explanation:
Hi ,
This is related to Trigonometric Ratios of Complementary Angles.
____________________________________________________________
As we know that two angles are said to be complementary if their
sum equals 90° .
i ) sin ( 90 - A ) = cos A
ii ) cos ( 90 - A ) = sin A
__________________________________________________________
According to the problem ,
a ) sin ( x - 20 ) = cos ( 3x - 10 )
⇒ sin ( x - 20 ) = sin [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = [ 90 - ( 3x - 10 ) ]
⇒ x - 20 = 90 - 3x + 10
⇒ x + 3x = 90 + 10 + 20
⇒ 4x = 120
⇒ x = 120 / 4
∴ x = 30
Similar questions