if sin x + √3 cos x = 2, then what us the value of x
Answers
★ Given :
sin x + cos x = √2
✩ To find :
• X = ?
Solution :
given that
>>sin x + cos x = √2
squaring both sides
(sin x + cos x)^2 =(√2)^2
using identity (a+b)^2=a^2 + b^2 + 2ab
sin^2x + cos^2x+2 sinx coSX = 2
using identity sin^2 A+ cos^2 A = 1
4G
90%
Math
5 points >
1 + 2 sinx cos x = 2
2 sin x cos x = 2 - 1
2 sin x COS X = 1
dividing by cos^2 x both sides
(2 sinx cosx)/cos^2 x =1 / cos^2x
2 tan x = sec^2 x
using identity 1+ tan^2 A = sec^2 A
2 tan x = 1 + tan^2 x
➡ tan^2 x - 2 tan x + 1 = 0
putting tan x = m
➡m^2 - 2 m+1=0
finding the roots of quadratic eqn
➡➡m^2 - m - m + 1 = 0
➡m (m-1)-1(m-1) = 0
(m-1) (m-1) = 0
from here we get
m = 1
since, tan x = m so, tan x = 1
tan x = 1
hence, x = 45° (Ans.)
Let’s see if we can avoid any radicals and any sort of ± reasoning about the signs.
sinx=3cosx just tells us tanx=3. Let’s do it in general and let t=tanx be the given and solve for y=sinxcosx.
tanx=sinxcosx⋅cosxcosx=sinxcosxcos2x
t=ycos2x
y=tcos2x=tsec2x=t1+tan2x=t1+t2
We have t=3
y=sinxcosx=31+32=310