Math, asked by hanideepthi, 4 months ago

if sin x = √99/10 find log sinx +log tanx

Answers

Answered by Anonymous
2

Answer:

≈ -2.

Step-by-step explanation:

To Find:

\implies \sf log (sinx) + log (tanx)

Solution:

\qquad : \implies \sf Sin \: x \: = \: \dfrac{\sqrt{99}}{10}

 \\

\qquad : \implies \sf log (sin x) + log (tan x)

 \\

\qquad : \implies \sf log (sin x) + log \bigg( \dfrac{sin x}{cos x} \bigg)

 \\

\quad : \implies \sf log (sin x) + log (sin x) - log (cos x)

 \\

\qquad : \implies \sf 2 log (sin x) - log (cos x)

 \\

\qquad : \implies \sf log (sin^2 x) - log (cos x)

 \\

\qquad : \implies \sf log (1 - cos^2 x) - log (cos x)

 \\

\qquad : \implies \sf \bigg( 1 - \dfrac{99}{100} \bigg)

 \\

\qquad : \implies \sf log \bigg( \dfrac{1}{100} \bigg) - log \bigg( \dfrac{\sqrt{99}}{10} \bigg)

 \\

\qquad : \implies \sf log 1 - log 100 - log 0.99

 \\

\qquad : \implies \sf \approx -2

 \\

\qquad \large{\underline{\boxed{\sf \approx -2}}}

Similar questions