If sin x / a = cos x / b = tan x / c = k then
A. bc + 1/ck + ak/( 1 + bk ) = 1/k( a + 1/a )
B. a² + b² + c² = 1/b²k⁴
C. bc + 1/ck + ak/( 1 + bk ) = a( 1/k + k )
D. a² + b² + c² = 1/b²k²
Answers
Answered by
15
Answer:
Answer:–
Given:–
Explanation:–
Now,
⇒ bc+1/ck+ak/1+bk
⇒ sinx/k²+1/tanx+sinx/1+cosx
⇒ sinx/k²+cosx/sinx+sinx-sinx.cosx/sin²x
⇒ sinx/k²+cosx/sinx+1-cosx/sinx
⇒ sinx/k²+1/sinx
⇒ a/k+1/ak
⇒ 1/k(a+1/a)
a²=sin²x/k²
b²=cos²x/k²
c²=tan²x/k²
Now,
⇒ a²+b²+c²
⇒ sin²x/k²+cos²x/k²+tan²x/k²
⇒ 1/k²(1+tan²x)
⇒ 1/k²(sec²x)
⇒ 1/k²(1/b²k²)
⇒ 1/k⁴b²
a²+b²+c²=1/b²k⁴
Answered by
40
AnswEr:-
Given :
According to the question :
Therefore,
-----------------------------------------------
We know,
Also,
Now,
Substituting the value of ,
_______________________________
chandresh126:
Great Explanation ..
Similar questions