Math, asked by Anonymous, 7 months ago

If sin x / a = cos x / b = tan x / c = k then

A. bc + 1/ck + ak/( 1 + bk ) = 1/k( a + 1/a )
B. a² + b² + c² = 1/b²k⁴
C. bc + 1/ck + ak/( 1 + bk ) = a( 1/k + k )
D. a² + b² + c² = 1/b²k²

Answers

Answered by Mounikamaddula
15

Answer:

Answer:

bc +  \frac{1}{ck}  +  \frac{ak}{ 1 + bk}  =  \frac{1}{k} (a +  \frac{1}{a} )

Given:

 \frac{sinx}{a}  =  \frac{cosx}{b} =  \frac{tanx}{c}   = k

Explanation:

ak = sinx \\ bk = cosx \\ ck = tanx

Now,

bc =  \frac{sinx}{ {k}^{2} }

bc+1/ck+ak/1+bk

⇒ sinx/k²+1/tanx+sinx/1+cosx

⇒ sinx/k²+cosx/sinx+sinx-sinx.cosx/sin²x

⇒ sinx/k²+cosx/sinx+1-cosx/sinx

⇒ sinx/k²+1/sinx

⇒ a/k+1/ak

⇒ 1/k(a+1/a)

=sin²x/

=cos²x/

=tan²x/

Now,

a²+b²+c²

sin²x/k²+cos²x/k²+tan²x/k²

1/k²(1+tan²x)

1/k²(sec²x)

1/k²(1/b²k²)

1/k⁴b²

++=1/k

Answered by EnchantedGirl
40

AnswEr:-

\\

\\

Given :

\\

\sf \implies \frac{sinx}{a} = \frac{cosx}{b} = \frac{tanx}{c}= k

\\

According to the question :

\\

\begin{gathered} \sf ak = \sin(x) \\\ bk = \cos(x) \\ \\ ck = \tan(x) \\ \\ bc {k}^{2} = \sin(x)\end{gathered}

\\

Therefore,

\\

 \implies \sf  \frac{ \sin(x) }{ {k}^{2} } +  \frac{1}{tanx}   +  \frac{sinx}{1 + cosx}  \\  \\

 \implies \sf \:  \frac{sinx}{ {k}^{2} }  +  \frac{cosx}{sinx}  +  \frac{sinx}{1 + cosx}  \\  \\

 \implies \sf \:  \frac{sinx}{ {k}^{2} }  +  \frac{1}{sinx}

  \\  \\ \implies \sf \:  \frac{ak}{ {k}^{2} }  +  \frac{1}{ak}  \\  \\

 \\  \implies \sf \boxed{ \frac{1}{k} (a +  \frac{1}{a} )} \\  \\

-----------------------------------------------

\\

We know,

\\

\sf ak = \sin(x) \\ \\ bk = \cos(x) \\ \\ ck = \tan(x) \\\\  bc {k}^{2} = \sin(x)

\\\\

 \implies \sf \frac{sinx}{cosx}  = tanx \\  \\  \implies \sf \:  \frac{ak}{bk}  = ck \\  \\  \\  \implies \tt \: ck  =  \frac{a}{b} \\  \\\\

Also,

 \\\\ \bigstar \:  \: \sf {sin}^{2}x +  {cos}^{2}x = 1 \\  \\

 \implies \sf \:  {a}^{2}  {k}^{2}  +  {b}^{2}  {k}^{2}  = 1 \\  \\  \\  \implies \sf  {a}^{2}  +  {b}^{2}  =  \frac{1}{ {k}^{2} }  \\  \\ \\

Now,

\\

 \implies \sf  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = ( {a}^{2}  +  {b}^{2}  ) + ( \frac{a}{bk} ) {}^{2}  \\  \\

 \implies \sf \:  \frac{1}{ {k}^{2} }  +  \frac{ {a}^{2} }{ {b}^{2} {k}^{2}  }  \\  \\  \\

 \implies \sf \frac{ {a}^{2} +  {b}^{2}  }{ {b}^{2}  {k}^{2} }  \\  \\  \\

Substituting the value of \sf a^2 + b^2 ,

\\

 \implies \sf \:   \frac{\frac{1}{ {k}^{2} } }{ {b}^{2} {k}^{2}  } \\  \\  \\  \implies  \sf \: \boxed{  {a}^{2} +  {b}^{2} +  {c}^{2}   =  \frac{1}{ {b}^{2} {k}^{4}  } } \\  \\  \\

_______________________________


chandresh126: Great Explanation ..
Similar questions