Math, asked by bhargavnaidubonu22, 3 months ago

.If sin x+a cos x=b, then what is the expression for |a sin x-cos x| in terms of a and b?

Answers

Answered by Anonymous
41

Given :

  • sin( x ) + a cos( x ) = b

To Find :

  • | a sin( x ) - cos( x ) | = ?

Solution :

 \dashrightarrow \:  \:  \tt \sin(x)  + a \cos(x)  = b \\  \\

  • Differentiate with respect to x

 \dashrightarrow \:  \:  \tt \:  \frac{d}{dx}  \bigg( \sin(x)  + a \cos(x)  \bigg) =  \frac{d}{dx} (b) \\  \\

 \dashrightarrow \:  \tt \:  \cos(x)  - a \sin(x)  = 0 \\  \\

{ { \dashrightarrow }}\tt \:  \:  \bigg(a \sin(x)  -  \cos(x)  \bigg) = 0 \\  \\

  • From this expression we can say, this function is always 0 for all real values of x

\\ \\ \dashrightarrow \:  \: { \underline{\boxed{ \mathfrak{ |a \sin(x)  -  \cos(x) |  = 0}}}} \\  \\

Similar questions