if sin x+cos x=1,then find the value of sin x.cos x
Answers
Answered by
4
sinx + cosx = 1
take square both sides,
sin²x + cos²x + 2sinx.cosx = 1
we know,
sin²x + cos²x = (1)²
1 + 2sinx.cosx = 1
1 -1 = 2.sinx.cosx
sins.cosx = 0/2 = 0
sinx.cosx = 0
take square both sides,
sin²x + cos²x + 2sinx.cosx = 1
we know,
sin²x + cos²x = (1)²
1 + 2sinx.cosx = 1
1 -1 = 2.sinx.cosx
sins.cosx = 0/2 = 0
sinx.cosx = 0
Answered by
1
Sin.x+cos.x=1
Squaring both sides
(Sin.x+cos.x)^2=1^2
Sin.x^2+cos.x^2+2sin.xcos.x=1
1+2sin.xcos.x=1
2sin.xcos.x=1-1
Sin.xcos.x=0÷2
Sin.xcos.x=0
Squaring both sides
(Sin.x+cos.x)^2=1^2
Sin.x^2+cos.x^2+2sin.xcos.x=1
1+2sin.xcos.x=1
2sin.xcos.x=1-1
Sin.xcos.x=0÷2
Sin.xcos.x=0
Similar questions