If sin x + cos x = √2, then x =?
Answers
Answered by
4
★ Given :-
- sin x + cos x = √2
★ To find :-
- x = ?
★ Solution :-
given that
➟sin x + cos x = √2
squaring both sides
➟(sin x + cos x)^2 = (√2)^2
using identity (a+b)^2=a^2 + b^2 + 2ab
➟sin^2 x + cos^2 x + 2 sinx cosx = 2
using identity sin^2 A + cos^2 A = 1
➟1 + 2 sinx cos x = 2
➟ 2 sin x cos x = 2 - 1
➟ 2 sin x cos x = 1
dividing by cos^2 x both sides
➟(2 sinx cosx)/cos^2 x = 1 / cos^2 x
➟ 2 tan x = sec^2 x
using identity 1 + tan^2 A = sec^2 A
➟ 2 tan x = 1 + tan^2 x
➟ tan^2 x - 2 tan x + 1 = 0
putting tan x = m
➟ m^2 - 2 m + 1 = 0
finding the roots of quadratic eqn
➟ m^2 - m - m + 1 = 0
➟ m ( m - 1 ) -1 ( m - 1 ) = 0
➟ ( m - 1 ) ( m - 1 ) = 0
from here we get
➤ m = 1
since, tan x = m so, tan x = 1
➤ tan x = 1
hence, x = 45° ( Ans.)
Similar questions