Math, asked by nagakumari1044, 7 hours ago

if sin x cos y=1/4 and 3tan x = 4tan y, then sin(x - y)=1/k .find k

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin(x)  \cos(y)  =  \frac{1}{4}  \\ 3 \tan(x)  = 4 \tan(y)

Now,

 \frac{ \tan(x) }{ \tan(y) }  =  \frac{4}{3}  \\

  \implies \: \frac{ \sin(x)  \cos(y)}{  \cos(x)\sin(y) }  =  \frac{4}{3}  \\

  \implies \: \frac{  \frac{1}{4} }{  \cos(x)\sin(y) }  =  \frac{4}{3}  \\

  \implies \: \frac{  1}{  4\cos(x)\sin(y) }  =  \frac{4}{3}  \\

  \implies \:\cos(x)\sin(y)  =  \frac{3}{16}  \\

Now,

 \sin(x - y)  =  \frac{1}{k}  \\

 \implies \:  \sin(x)  \cos(y)  -  \cos(x)  \sin(y)  =  \frac{1}{k} \\

 \implies \:   \frac{1}{4}  -  \frac{3}{16}   =  \frac{1}{k} \\

 \implies \:     \frac{4 - 3}{16}   =  \frac{1}{k} \\

 \implies \:     \frac{1}{16}   =  \frac{1}{k} \\

 \implies \:     k = 16 \\

Similar questions