Math, asked by viteshpallapotu, 3 days ago

if (sin x + cosec x)^2 + (sec x + cos x)2= k + tan^2 x + cot^2 x then k=​

Answers

Answered by tennetiraj86
3

Step-by-step explanation:

Given :-

(Sin x+Cosec x)²+(Sec x+Cos x)² = k+Tan² x+Cot² x

To find :-

Find the value of k ?

Solution :-

Given equation is

(Sin x+Cosec x)²+(Sec x+Cos x)²

= k+Tan² x+Cot² x

On taking LHS :

(Sin x+Cosec x)²+(Sec x+Cos x)²

=>( Sin² x+ Cosec² x + 2 Sin x Cosec x ) + ( Sec² x + Cos² x + 2Sec x Cos x)

Since (a+b)² = a²+2ab+b²

=> (Sin² x+Cos²x) +Cosec²x+Sec²x

+[2Sin x(1/Sin x) ]+ [2 Cos x (1/Cos x)]

=> (Sin² x+Cos²x) +Cosec²x+Sec²x +

[2 (Sin x/Sin x) ]+ [2 (Cos x /Cos x)]

=> 1 + Cosec² x+ Sec² x +2(1)+2(1)

Since Sin² A+ Cos² A = 1

=> 1+ Cosec² x+ Sec² x +2+2

=>(1+2+2)+Cosec² x+ Sec² x

=> 5+Cosec² x+ Sec² x

We know that

Cosec²x-Cot² x = 1 and

Sec² x - Tan² x = 1

=> 5+ 1+Cot² x + 1+ Tan² x

=> (5+1+1)+Tan² x+ Cot² x

=> 7 + Tan² x + Cot² x

Now given equation becomes

=> 7 + Tan² x + Cot² x = k+Tan² x+Cot² x

=> 7 + Tan² x + Cot² x -Tan² x-Cot² x = k

=> 7 = k

=> k = 7

Therefore, k = 7

Answer:-

The value of k for the given problem is 7

Used formulae:-

  • (a+b)² = a²+2ab+b²
  • Cosec²x-Cot² x = 1
  • Sec² x - Tan² x = 1
  • Sec x = 1/Cos x
  • Cosec x = 1/Sin x
Similar questions