If sin x =n sin (x+2alpha) prove that tan (x+alpha)=1+n÷1-n tanalpha
Answers
Answered by
21
Explanation:
We have,
sinx=nsin(x+2α)
⇒
sinx
sin(x+2α)
=
n
1
⇒
sin(x+2α)−sinx
sin(x+2α)+sinx
=
1−n
1+n
.(using componendo and dividendo)
⇒
2sinαcos(x+α)
2sin(x+α)cosα
=
1−n
1+n
⇒tan(x+α)=
1−n
1+n
tanα
Answered by
23
Answer is following .
Attachments:
Similar questions