Math, asked by thahirmalakaran8670, 11 months ago

If sin x+ sin^2x=1 then show that cos^2x + cos^4x=1

Answers

Answered by warylucknow
0

Answer:

Hence proved cos^{2}x+cos^{4} x=1.

Step-by-step explanation:

It is given that sin\ x+sin^{2}x=1.

Then, sin\ x=1-sin^{2}x=cos^{2}x

Compute the value of cos^{2}x+cos^{4} x as follows:

cos^{2}x+cos^{4} x=cos^{2}x+(cos^{2} x)^{2}

                      =sin\ x+(sin\ x)^{2}

                      =sin\ x+sin^{2}x\\=1

Hence proved cos^{2}x+cos^{4} x=1.

Similar questions