If sin x + sin^2x + sin 3x = 1. then find value of cos^6x-cos^4x +8 cos^2x?
Answers
Answered by
6
Correct Question: If sinx + sin²x + sin³x = 1 then find value of cos⁶x - 4cos⁴x + 8 cos²x.
Solution: sinx + sin²x + sin³x = 1
→ sin²x + sinx + sin³x = 1
→ sin²x + sinx(1 + sin²x) = 1
→ sinx(1 + sin²x) = 1 - sin²x
→ sinx(1 + sin²x) = cos²x
Square both sides because we want one term cos⁴x.
→ [sinx(1 + sin²x)]² = cos⁴x
→ sin²x(1 + sin²x)² = cos⁴x
→ (1 - cos²x)(2 - cos²x)² = cos⁴x
→ (1 - cos²x)(4 + cos⁴x - 4cos²x) = cos⁴x
→ 4 + cos⁴x - 4cos²x - 4cos²x - cos⁶x + 4cos⁴x = cos⁴x
→ 4 - 8 cos²x - cos⁶x + 4cos⁴x = 0
→ 4 = cos⁶x + 8cos²x - 4cos⁴x
Answer is 4.
Similar questions