Math, asked by bhumireddynagmailcom, 2 months ago

if sin x + sin y = 4/5 and sin x - sin y = 2/7 prove that 5 tan (y + x)/2 + 14 tan( y - x)/2 = 0​

Answers

Answered by sharanyalanka7
2

Answer:

Step-by-step explanation:

Given,

sinx + siny = 4/5 [Let it be equation - 1]

sinx - siny = 2/7 [Let it be equation - 2]

To Prove :-

5tan\bigg(\dfrac{x+y}{2}\bigg)+14tan\bigg(\dfrac{y-x}{2}\bigg)=0

Solution :-

Equation -1/Equation - 2

\implies \dfrac{sinx+siny}{sinx-siny}=\dfrac{\dfrac{4}{5}}{\dfrac{2}{7}}

\dfrac{sinx+siny}{sinx-siny}=\dfrac{4}{5}\times \dfrac{7}{2}

\dfrac{sinx+siny}{sinx-siny}=\dfrac{14}{5}

We know that :-

sinC+sinD=2sin\bigg(\dfrac{C+D}{2}\bigg)cos\bigg(\dfrac{C-D}{2}\bigg)

sin-sinD=2cos\bigg(\dfrac{C+D}{2}\bigg)sin\bigg(\dfrac{C-D}{2}\bigg)

\implies \dfrac{2sin\bigg(\dfrac{x+y}{2}\bigg)cos\bigg(\dfrac{x-y}{2}\bigg)}{2cos\bigg(\dfrac{x+y}{2}\bigg)sin\bigg(\dfrac{x-y}{2}\bigg)}=\dfrac{14}{5}

tan\bigg(\dfrac{x+y}{2}\bigg)cot\bigg(\dfrac{x-y}{2}\bigg)=\dfrac{14}{5}

tan\bigg(\dfrac{x+y}{2}\bigg)\times\dfrac{1}{tan\bigg(\dfrac{x-y}{2}\bigg)}=\dfrac{14}{5}

5tan\bigg(\dfrac{x+y}{2}\bigg)=14tan\bigg(\dfrac{x-y}{2}\bigg)

5tan\bigg(\dfrac{x+y}{2}\bigg)-14tan\bigg(\dfrac{x-y}{2}\bigg)=0

5tan\bigg(\dfrac{x+y}{2}\bigg)-14tan\bigg(\dfrac{-(y-x)}{2}\bigg)=0

5tan\bigg(\dfrac{y+x}{2}\bigg)+14tan\bigg(\dfrac{y-x}{2}\bigg)=0

Similar questions