Math, asked by Mysterioushine, 4 months ago

If sin x + sin² x + ............ = 4 + \sf{\sqrt{3}} , 0 < x < π and x ≠ \sf{\dfrac{\pi}{2}} , then x =

a] 30° , 60°

b] 60° , 120°

c] 90° , 120°

d] 30° , 45°

Please include the correct answer with proper explanation. ​

Answers

Answered by BrainlyPopularman
161

Correct Question :–

If 1+sin x + sin² x + ............ = 4 + \sf{2\sqrt{3}} , 0 < x < π and x ≠ \sf{\dfrac{\pi}{2}} , then x =

a] 30° , 60°

b] 60° , 120°

c] 90° , 120°

d] 30° , 45°

ANSWER :–

GIVEN :–

 \\ \implies\bf 1+ \sin x +  \sin^{2} x + ............ \infty  = 4 + 2{\sqrt{3}} \\

• And –

 \\ \implies \bf 0 &lt; x &lt; π \:  \: and \:  \: x \ne\sf{\dfrac{\pi}{2}} \\

TO FIND :–

• Value of 'x' = ?

SOLUTION :–

 \\ \implies\bf  1+\sin x +  \sin^{2} x + ............ \infty  = 4 + 2{\sqrt{3}} \\

• It's an infinite G.P. , So that –

 \\ \implies\bf  \dfrac{1}{1 -  \sin x}= 4 +2 {\sqrt{3}} \\

 \\ \implies\bf 1= (4 +2 {\sqrt{3})(1 -  \sin x)} \\

 \\ \implies\bf 1= (4 + 2{\sqrt{3})(1) - ( \sin x)(4 + 2{\sqrt{3})}} \\

 \\ \implies\bf 1=4 + 2{\sqrt{3} -4\sin x- 2{\sqrt{3} \sin x}} \\

 \\ \implies\bf 1+ 4\sin x +2 {\sqrt{3} \sin x}=4 + 2{\sqrt{3}} \\

 \\ \implies\bf 4\sin x + 2{\sqrt{3} \sin x}=4 +2 {\sqrt{3}} -1\\

 \\ \implies\bf (4+2{\sqrt{3}) \sin x}=3+ 2{\sqrt{3}} \\

 \\ \implies\bf  \sin x= \dfrac{3 + 2\sqrt{3}}{4+2\sqrt{3}}\\

• Now rationalization –

 \\ \implies\bf  \sin x= \dfrac{3+2\sqrt{3}}{4+2 \sqrt{3}} \times \dfrac{4-2 \sqrt{3} }{4- 2\sqrt{3} } \\

 \\ \implies\bf  \sin x= \dfrac{(3+2 \sqrt{3})(4-2\sqrt{3} )}{(4+2\sqrt{3})(4-2 \sqrt{3} )}\\

 \\ \implies\bf  \sin x= \dfrac{12 - 6 \sqrt{3} + 8\sqrt{3} - 12}{(4)^{2} -(2 \sqrt{3} )^{2} }\\

 \\ \implies\bf  \sin x= \dfrac{2 \sqrt{3}}{16-12}\\

 \\ \implies\bf  \sin x= \dfrac{2 \sqrt{3}}{4}\\

 \\ \implies\bf  \sin x= \dfrac{ \sqrt{3}}{2}\\

 \\ \implies\bf  x= \sin^{-1}\bigg(\dfrac{ \sqrt{3}}{2}\bigg)\\

• We know that –

 \\ \longrightarrow\bf \sin(60^{\circ}) =\sin(120^{\circ})=\dfrac{ \sqrt{3}}{2}\\

 \\ \implies\bf  x=60^{\circ},120^{\circ}\\

Hence , Option (b) is correct.


BrainlyPopularman: Thank you ♡
suraj5070: awesome answer bro. :)
BrainlyPopularman: Thanks
suraj5070: :) 1 help chahiye
Anonymous: ✌️ qualified answer bro.
tennetiraj86: thank you
Anonymous: wello
Answered by tennetiraj86
135

Answer:

Option b

Option b X=60° or 120°

Step-by-step explanation:

Used formulae:-

  • If a is the first term and the common ratio is r then sum of infinity terms of the GP is a/1-r.
  • (a+b)+a-b)=-b²
  • Sin(90°+A)=Cos A
  • Sin²X=(Sin X)²
Attachments:

suraj5070: awesome answer bro.. :)
tennetiraj86: thq
suraj5070: no thanks between us bro
Similar questions