If sin x+sin²x =1 Then
Cos^12 x + 3 cos^10 x + 3 cos^8 x + Cos^6 x + 2 cos^4 x + cos²x-2=
=
Answers
Answered by
0
Step-by-step explanation:
The question is very simple
sin x+sin²x =1
sinx = 1 - sin²x
sinx = cos²x ----- equation 1
Now,
Cos^12 x + 3 cos^10 x + 3 cos^8 x + Cos^6 x + 2 cos^4 x + cos²x-2
Taking cos^6x common from first four terms
cos^6x ( Cos^6 x + 3 cos^4 x + 3 cos^2 x + 1 ) + 2 cos^4 x + cos²x-2
Now the part inside the bracket is in the form (a+b)^3
cos^6x ( cos^2x+1 )^3 + 2 cos^4 x + cos²x-2
Now again taking cos^2x
((cos^2x)^2+cos^2x)^3 -1 + 2 cos^4 x + cos²x-2
Now we know that sin x = cos^2x
(sin^2 x + cos^2x)^3 -1 + 2 cos^4 x + cos²x-2
1-1 + 2 cos^4 x + cos²x-2
2 cos^4 x + cos²x - 2
2 (cos^2x)^2 + cos²x -2
Again putting cos²x= sin x
2 sin ^2 x + cos^2 x -2
1 + sin^2x -2
sin^2 x -1
Similar questions