Math, asked by abbasali4052, 1 year ago

If Sin x +sin²x=1 then the value of cos²x+cos⁴x is ?

Answers

Answered by Anonymous
5

\huge\underline\mathfrak{Answer-}

\boxed{\tt{\red{Cos^2\:x+Cos^4\:x=1}}}

\huge\underline\mathfrak{Explanation-}

Given :

\tt{Sinx+Sin^2\:x=1}

To find :

\tt{Value\:of\:Cos^2\:x+Cos^4\:x}

Solution :

We know that,

\tt{Sin^2\:x+Cos^2\:x=1} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀–eq (1)

Also, it is given that,

\tt{Sinx+Sin^2\:x=1} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀–eq (2)

From (1) and (2),

\implies \tt{\cancel{Sin^2\:x}+Cos^2\:x} \tt{=} \tt{Sinx+\cancel{Sin^2\:x}}

\implies \tt{Cos^2\:x=Sinx}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀–eq (3)

Squaring both sides,

\implies \tt{(Cos^2\:x)^2=(Sinx)^2}

\implies \tt{Cos^4\:x=Sin^2\:x} ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀–eq (4)

Adding (3) and (4),

\implies \tt{Cos^2\:x+Cos^4\:x=Sin\:x+Sin^2\:x}

[ °° \tt{Sinx+Sin^2\:x=1} ]

° \boxed{\tt{\red{Cos^2\:x+Cos^4\:x=1}}}

Answered by FIREBIRD
6

Answer:

cos²x + cos⁴x = 1

Step-by-step explanation:

We Have :-

sinx + sin²x = 1

To Find :-

cos²x + cos⁴x

Identities Used :-

sin²x + cos²x = 1

Solution :-

sinx + sin²x = 1 ------------( i )

1 = sin²x + cos²x

sinx + sin²x = sin²x + cos²x

sinx = cos²x -----------( ii )

( sinx )² = ( cos²x )²

sin²x = cos⁴x-------------( iii )

Putting ( ii ) , ( iii ) in ( i )

we get

cos²x + cos⁴x = 1

Similar questions