if sin x + sin²x+ sin³x= 1 then prove that cos⁶x - 4cos⁴x+ 8 cos²x=4.
Answers
Answered by
3
Answer:
Step-by-step explanation:
Hey mate here is your answer:
⇒sin x + sin²x+sin³x=1,
⇒sin x + sin³x=1-sin²x,
⇒(sin x + sin³x)²=(1-sin²x)²,
⇒sin²x+sin^6 x+2 sin^4 x=cos^4 x,
⇒1-cos²x+(1-cos²x)³+2(1-cos²x)²=cos^4 x,
⇒1-cos²x+1-3 cos²x+3 cos^4 x-cos^6 x+2-4cos²x+2 cos^4 x=cos^4 x,
Hence it is proved that,cos⁶x - 4cos⁴x+ 8 cos²x=4.
Hope it helps you.
Similar questions