Math, asked by bastiagitakumari, 1 year ago

If sin(x+y)=ycos(x+y) then prove that dy/dx=–(1+ysquare/ysquare)

Answers

Answered by rishu6845
11

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by Anonymous
27

\underline{\textbf{\large{Given :}}}

sin(x+y)=ycos(x+y)

\underline{\textbf{\large{To prove:}}}

\frac{dy}{dx}=- (\frac{1 + {y}^{2}}{{y}^{2}})

\underline{\textbf{\large{Proof:}}}

 \sin(x + y)  =  y\cos(x + y)

y =  \frac{ \sin(x + y) }{ \cos(x + y) }

y =  \tan(x + y)

Differentiation wrt x

( \frac{dy}{dx} ) =  \frac{d}{dx} ( \tan(x + y) )

( \frac{dy}{dx} ) =  { \sec}^{2} (x + y) \times (1 +  \frac{dy}{dx} )

 (\frac{dy}{dx} ) =  { \sec}^{2} (x + y)  +   { \sec }^{2} (x + y)( \frac{dy}{dx} )

( \frac{dy}{dx})  -  { \sec }^{2} ( x + y)( \frac{dy}{dx} ) =  { \sec}^{2} (x + y)

 (\frac{dy}{dx} )(1 -  { \sec }^{2} (x + y)) = 1 +  { \tan }^{2} (x + y)

 (\frac{dy}{dx} )(1 -  (1 + tan^2 (x + y)) = 1 +  { \tan }^{2} (x + y)

 (\frac{dy}{dx} )(1 -  1 - tan^2 (x + y)) = 1 +  { \tan }^{2} (x + y)

 (\frac{dy}{dx} )( - tan^2 (x + y)) = 1 +  { \tan }^{2} (x + y)

 \frac{dy}{dx}  =  \frac{(1 +  { \tan}^{2}(x + y)) }{ - { \tan}^{2} (x + y)}

 \frac{dy}{dx}  =  \frac{1 +  {y}^{2} }{- {y}^{2} }

\frac{dy}{dx}=- (\frac{1 + {y}^{2}}{{y}^{2}})

Similar questions