Math, asked by dimpu29, 5 months ago

if sin y =(a+y) , show that dy/dx =sin²(a+y)/sin a​

Answers

Answered by EnchantedGirl
18

\bigstar \underline {\underline{\sf \bf CORRECT\ QUESTION:-}}\\\\

❥ If sin y= x sin(a_y) ,Show that dy/dx = sin²(a+y)/sin a​.

\\

\bigstar \underline{\underline{\sf \bf ANSWER:-}}\\\\

We need to know :

\\

Chain rule :

\\

\mapsto \sf \orange{\frac{dy}{dx} =\frac{dy}{du} \frac{du}{dx}}\\\\

Quotient rule :

\\

\mapsto \sf \orange{\frac{dy}{dx} =\frac{v(du/dx)-u(dv/dx)}{v^2}} \\\\

---------------------------

\\

Now,

Given that sin y = x sin(a+y)

=> x = siny / sin(a+y)

\\

Differentiating w.r.t y ,

\\

:\implies \sf \frac{dx}{dy} = \frac{cosysin(a+y)-sinycos(a+y)}{sin^2(a+y)} \\\\\\:\implies \sf \frac{dx}{dy} = \frac{cosy(sinacosy+cosasiny)-siny(cosacosy-sinasiny)}{sin^2(a+y)} \\\\\\:\implies \sf \frac{dx}{dy} = \frac{cos^2ysina+cosasinycosy-sinycosacosy+sinasin^2y}{sin^2(a+y)} \\\\\\:\implies \sf \frac{dx}{dy} =\frac{cos^2ysina+sinasin^2y}{sin^2(a+y)} \\\\\\:\implies \sf \frac{dx}{dy} =\frac{sina(cos^2y+sin^2y)}{sin^2(a+y)} \\\\\\

\tt [cos^2 \theta+sin^2 \theta = 1]\\\\

:\implies \sf \frac{dx}{dy} =\frac{sina(1)}{sin^2a(a+y)}\\\\\\:\implies \sf \frac{dx}{dy} = \frac{sina}{sin^2a(a+y)}\\\\\\

Therefore,

\\

\mapsto \boxed{\boxed{\bold{\frac{dy}{dx} =\frac{sin^2(a+y)}{sina}}}}\\\\

Hence proved !

\\

__________________

Answered by EnchantedBoy
9

\bigstar\huge\bf\underline{\underline{\red{Answer:-}}}

\bigstar\bf\underline\blue{Given:-}

  • \bf sin \ y \ = \ x \ sin \ (a+y)

\bigstar\bf\underline\green{To \ prove:-}

  • \bf sin \ y \ = \ x \ sin \ (a+y) \ = \frac{sin^{2}(a+y)}{sin \ a}

\bigstar\bf\underline\orange{Proof:-}

\bf Given,

\bf sin \ y \ = \ x \ sin \ (a+y)

\bf\implies x=\frac{sin \ y}{sin(a+y)}

\bf Differentiating \ w.r.t.x \ on \ both \ sides

\bf \frac{dx}{dy}=\frac{sin(a+y).cos \ y-sin \ y \ cos(a+y)}{sin^{2}(a+y)}

\bf \frac{dx}{dy}=\frac{sin(a+y-y)}{sin^{2}(a+y)}

\bf\implies\frac{dx}{dy}=\frac{sin \ a}{sin^{2}(a+y)}

\bf Hence,

\bf\boxed{\boxed{\purple{\frac{dx}{dy}=\frac{sin \ a}{sin^{2}(a+y)}}}}

\bf\underline\pink{Hence \ proved \ !!}

Similar questions