Math, asked by abhaychettri1, 3 months ago

If sin y = x sin ( a + y ) , prove that dy = sin " ( 0 + 3 ) dx _____
sin a​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

 \sf \: If  \: siny = x \: sin(a + y) \: Prove that \: \dfrac{dy}{dx} =   \dfrac{{sin}^{2} (a + y)}{sina}

\large\underline{\bold{Answer-}}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

(1). \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

(2). \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

(3). \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

(4). \:  \:  \boxed{ \bf{sin(x - y) = sinxcosy + sinycosx}}

(5) \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx}\bigg( \dfrac{u}{v} \bigg)  = \dfrac{v \: \dfrac{d}{dx}u  \: -  \: u \: \dfrac{d}{dx}v}{ {v}^{2} } }}

\large\underline{\bold{Solution-}}

 \bf \: siny = x \: sin(a + y)

 \sf \: x = \dfrac{siny}{sin(a + y)}

On differentiating both sides w. r. t. y, we get

 \sf \: \dfrac{d}{dy}x = \dfrac{d}{dy}\bigg(\dfrac{siny}{sin(a + y)}  \bigg)

 \sf \: \dfrac{dx}{dy} = \dfrac{sin(a + y)\dfrac{d}{dy}siny - siny\dfrac{d}{dy}sin(a + y)}{ {sin}^{2} (a + y)}

 \sf \: \dfrac{dx}{dy} = \dfrac{sin(a + y) \: cosy \:  -  \: siny \: cos(a + y)}{ {sin}^{2}(a + y) }

 \sf \: \dfrac{dx}{dy} = \dfrac{sin(a + \cancel{y} - \cancel{y})}{ {sin}^{2}(a + y)}

 \therefore \:  \bf \: \dfrac{dy}{dx} \:  =  \: \dfrac{ {sin}^{2} (a + y)}{sina}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

 \boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}

 \boxed{ \bf{ \: \dfrac{d}{dx} log(x)  = \dfrac{1}{x} }}

 \boxed{ \bf{ \: \dfrac{d}{dx} {e}^{x}  =  {e}^{x} }}

 \boxed{ \bf{ \: \dfrac{d}{dx} {a}^{x}  =  {a}^{x}  log(a)   \:  \: \: where \: a > 0}}

 \boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2} x}}

 \boxed{ \bf{ \: \dfrac{d}{dx}secx = secx \: tanx}}

 \boxed{ \bf{ \: \dfrac{d}{dx}cotx =  -  {cosec}^{2} x}}

 \boxed{ \bf{ \: \dfrac{d}{dx}cosecx =  - cosecx \: cotx}}

 \boxed{ \bf{ \: \dfrac{d}{dx}u.v \:  =  \: u \: \dfrac{d}{dx} v \:  +  \: v \: \dfrac{d}{dx} u}}

Similar questions