If sin0 = a/b then prove that (sec 0 + tan 0) =
Answers
Answered by
9
Answer:
√( (b + a)/(b - a) )
Step-by-step explanation:
sinA = a/b , therefore, using,
sin²A + cos²A = 1
=> (a/b)² + cos²A = 1
=> cos²A = 1 - a²/b² = (b² - a²)/b²
=> cosA = √{(b² - a²)/b²} = √(b² - a²)/b
Hence,
secA = b/√(b² - a²) ...(1)
Square on both sides :
=> sec²A = b²/(b² - a²)
=> 1 + tan²A = b²/(b² - a²)
=> tan²A = b²/(b² - a²) - 1
=> tan²A = a²/(b² - a²)
=> tanA = a/√(b² - a²) ...(2)
Thus, adding (1) & (2):
secA + tanA
=> b/√(b² - a²) + a/√(b² - a²)
=> (b + a)/√(b² - a²)
=> √(b + a)² / √(b - a)(b + a)
=> √(b + a) / √(b - a)
=> √( (b + a)/(b - a) )
Similar questions
Math,
1 month ago
Math,
1 month ago
India Languages,
3 months ago
Computer Science,
10 months ago
Business Studies,
10 months ago