if sin0 +cos0 =√3 ,then prove that tan 0 + cot0 =1
Answers
Given---> Sinθ + Cosθ = √3
To prove ---> Tanθ + Cotθ = 1
Proof ---> We know that,
Sinθ + Cosθ = √3
Squaring both sides, we get,
=> ( Sinθ + Cosθ )² = (√3 )²
We have an identity ,
( a + b )² = a² + b² + 2ab , applying it here we get
=> Sin²θ + Cos²θ + 2Sinθ Cosθ = 3
We have a formula ,
Sin²A + Cos²A = 1 , applying it here , we get,
=> 1 + 2 Sinθ Cosθ = 3
=> 2 sinθ Cosθ = 3 - 1
=> 2 Sinθ Cosθ = 2
=> Sinθ Cosθ = 1
Now we know that,
tanA = SinA / CosA , CotA = CosA / SinA
Now, LHS
= tanθ + Cotθ = ( Sinθ / Cosθ ) + ( Cosθ / Sinθ )
= ( Sin²θ + Cos²θ ) / Sinθ Cosθ
Putting Sin²θ + Cos²θ = 1
= 1 / Sinθ Cosθ
Putting SinθCosθ = 1 , in it , we get
= 1 / 1
= 1 = RHS