Math, asked by ja9833077, 20 days ago

If sin0/x = cos0/y then prove that sin 0 – cos 0 = x–y/√x² + y²​

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

ple mark it as brainliest

Step-by-step explanation:

given :  \frac{sin \:θ }{x}  =  \frac{cos \:θ }{y}  \\  \\ to \: prove :  sin \:θ - cos \: θ  =  \frac{x - y}{ \sqrt{x {}^{2}  + y {}^{2} } }  \\  \\ so \: now \\  \frac{sin \:θ }{cos \:θ }  =  \frac{x}{y} \:  \:  \:  \:  \:  \:  \:  \:  \: (1)  \\  \\ tan \: θ =  \frac{x}{y}  \\  \\ we \: know \: that \\  1 + tan {}^{2}θ  = sec {}^{2} θ \\  =  1 + (  \: \frac{x}{y}  \: ) {}^{2}  \\  \\  =  1 +  \frac{x {}^{2} }{y {}^{2} }  \\  \\  =  \frac{x {}^{2} + y {}^{2}  }{y {}^{2} }  \\  \\ secθ =  \frac{ \sqrt{x {}^{2}  + y {}^{2} } }{y}  \\  \\ cos \: θ =  \frac{y}{ \sqrt{x {}^{2} + y {}^{2}  } }

applying \: dividendo  \:  on \: (1) \\ we \: get \\  \\  \frac{sin \:θ - cos \:  θ}{cos \: θ}  =  \frac{x - y}{y}  \\  \\ sin \: θ - cos \: θ =  \frac{x - y}{y}  \times cos \: θ \\  \\  =  \frac{x -y }{y}  \times  \frac{y}{ \sqrt{x {}^{2} + y {}^{2}  } }  \\  \\ sin \:θ - cos \:   θ=  \frac{x - y}{ \sqrt{x {}^{2}  + y {}^{2} } }  \\  \\ thus \: proved

Similar questions