Math, asked by assboy401, 10 months ago

If sin17°=x/y.Find sec17°-sin73°​

Answers

Answered by ateeb2019amir
0

Answer:

Here,  sin 17 = \frac{x}{y}

sec 17 - sin73

⇒ \frac{1}{cos 17} - cos (90-17)                  [sec\theta =\frac{1}{cos\theta}]

⇒ \frac{1-cos^217}{cos17}

⇒ \frac{sin^217}{(\sqrt{cos17} )^2}               [sin^2\theta+cos^2\theta=1]

⇒ \frac{sin^217}{\sqrt{1-sin^217}}                  [sin^2\theta+cos^2\theta=1]

⇒ \frac{\frac{x^2}{y^2} }{\sqrt{1-\frac{x^2}{y^2} } }     [given]

⇒ \frac{\frac{x^2}{y^2} }{\sqrt{\frac{y^2-x^2}{y^2} } }

⇒ \frac{x^2}{y^2} \times\frac{y}{y^2-x^2}         [root and square cancels, (\sqrt{y} )^{2} =y ]

Answered by 123sharvesh123
0

Answer:

Step-by-step explanation:

sin 17° =  

x

y

sin 73° = sin (90° – 17°)

= cos 17°

∴ cos 17° = √1 - sin² 17°

=  

√y² - x²

y

∴ sec 17° =  

y

√y² - x²

∴ sec 17° – sin 73°

= sec 17° – cos 17°

y

-  

√y² - x²

√y² - x² y

=  

y² - (y² - x²)

y√y² - x²

=  

y² - y² + x²

y√y² - x²

=  

y

y√y² - x²

Similar questions