Math, asked by Olive55, 12 hours ago

If (sin²θ - 3sinθ + 2)/cos²θ = 1, then θ = ?​

Answers

Answered by NITESH761
2

Answer:

\rm θ = 90^{\circ} \: \: or \: \: 30^{\circ}

Step-by-step explanation:

We have,

\rm \dfrac{( \sin ^2 θ -3 \sin θ +2)}{\cos ^2 θ}=1

\rm \dfrac{( \sin ^2 θ -3 \sin θ +2)}{1-\sin ^2 θ}=1

\rm  \sin ^2 θ -3 \sin θ +2=1-\sin ^2 θ

\rm 2 \sin ^2 θ -3 \sin θ +1=0

let  \rm \sin \theta =x

\rm 2 x^2 -3 x +1=0

\rm x = \dfrac{-b ± \sqrt{b^2 -4ac}}{2a}

\rm x= \dfrac{-(-3) ± \sqrt{(-3)^2 -4(2)(1)}}{2(2)}

\rm x= \dfrac{3± \sqrt{9 -8}}{4}

\rm x= \dfrac{3± \sqrt{1}}{4}

\rm x= \dfrac{3± 1}{4}

\rm x= \dfrac{4}{4} \: \:  or \:  \: \dfrac{2}{4}

\rm x= 1 \: or \: \dfrac{1}{2}

\rm \sin \theta = 1 \: \: or \: \: \dfrac{1}{2}

\rm \sin \theta = \sin 90^{\circ} \: \: or \: \: \sin 30^{\circ}

\rm θ = 90^{\circ} \: \: or \: \: 30^{\circ}

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

 \rm \: \dfrac{ {sin}^{2}\theta  - 3sin\theta  + 2 }{ {cos}^{2}\theta } = 1

 \rm \:  {sin}^{2}\theta  - 3sin\theta  + 2 =  {cos}^{2}\theta

We know,

\boxed{\tt{  \:  \:  {sin}^{2}x +  {cos}^{2}x = 1 \:  \: }} \\

So, using this identity, we get

 \rm \:  {sin}^{2}\theta  - 3sin\theta  + 2 =  1 - {sin}^{2}\theta

 \rm \:  {sin}^{2}\theta  - 3sin\theta  + 2 - 1  +  {sin}^{2}\theta  = 0

 \rm \: 2{sin}^{2}\theta  - 3sin\theta  + 1   = 0

So, on splitting the middle terms, we get

 \rm \: 2{sin}^{2}\theta  - 2sin\theta - sin\theta   + 1   = 0

\rm \: 2sin\theta (sin\theta  - 1) - 1(sin\theta  - 1) = 0

\rm \: (2sin\theta  - 1)(sin\theta  - 1) = 0

\rm\implies \:sin\theta  = \dfrac{1}{2}  \:  \: or \:  \: sin\theta  = 1

Consider, Case :- 1

\rm \: sin\theta  = \dfrac{1}{2}

\rm \: sin\theta  = sin\dfrac{\pi}{6}

We know,

\boxed{\tt{ sinx = siny \rm\implies \: \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z}}

So, using this result, we get

\rm\implies \:\theta = n\pi + {( - 1)}^{n}\dfrac{\pi}{6} \:  \:   \: \forall \: n \:  \in \: Z \\

Consider Case :- 2

\rm \: sin\theta  = 1

\rm \: sin\theta  = sin\dfrac{\pi}{2}

\rm\implies \:\theta = n\pi + {( - 1)}^{n}\dfrac{\pi}{2} \:  \:   \: \forall \: n \:  \in \: Z \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions