Math, asked by saniyakhan5126, 6 months ago

If sin2A=1, then find the value of tanA​

Answers

Answered by Nirali4305
2

Answer:

1

Step-by-step explanation:

sin2A=1

sin2A=sin90

2A=90

A=45

tanA=tan45

tanA=1

Answered by isha00333
0

Given:

sin2A=1

To find: the value of tanA.

Solution:

Solve the given expression.

\[\begin{array}{l}\sin 2A = 1\\ \Rightarrow \sin 2A = \sin {90^ \circ }\\ \Rightarrow {\sin ^{ - 1}}\left( {\sin 2A} \right) = {\sin ^{ - 1}}\left( {\sin {{90}^ \circ }} \right)\\ \Rightarrow 2A = {90^ \circ }\end{array}\]

\[\begin{array}{l} \Rightarrow A = \frac{{{{90}^ \circ }}}{2}\\ \Rightarrow A = {45^ \circ }\end{array}\]

Find the value of tanA.

\[\tan A = \tan {45^ \circ }\]

\[ \Rightarrow \tan A = 1\]

Hence, the value of tanA is 1.

Similar questions