If sin²y + cosxy = K³ find. What is the value of at x = 1, y = π/4.
Answers
Answered by
0
Answer:
sin
2
Y+cosXY=K
Differentiating w.e.r. x, we get
2siny.cosy
dx
dy
+(−sinXY)(x.
dx
dy
+y)=0
dx
dy
=
(sin2y−xsinxy)
ysinxy
⇒
dx
dy
]
x=1,y=
4
π
=
sin
4
π
−sin
4
π
4
π
.sin
4
π
=
1−
2
1
4
π
.
2
1
=
4(
2
−2)
π
Step-by-step explanation:
plz mark me in brainliest answer
Answered by
0
Answer:
Hello good morning
Make me the Branlist please buddy
Step-by-step explanation:
sin2Y+cosXY=K
Differentiating w.e.r. x, we get
2siny.cosydxdy+(−sinXY)(x.dxdy+y)=0
dxdy=(sin2y−xsinxy)ysinxy
⇒dxdy]x=1,y=4π=sin4π−sin4π4π.sin4π=1−214π.21=4(2−2)π
Similar questions