Math, asked by Akhilpal4184, 1 year ago

if sin3B/sinB=(a^2-c^2/2ac)^2 then a^2,b^2,c^2 are in

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{\dfrac{sin3B}{sinB}=\left(\dfrac{a^2-c^2}{2ac}\right)^2}

\underline{\textsf{To find:}}

\mathsf{a^2,b^2,c^2\;are\;in\,A.P,G.P\;(or)H.P}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{sin3B}{sinB}=\left(\dfrac{a^2-c^}{2ac}\right)^2}

\mathsf{\dfrac{3\,sinB-4\,sin^3B}{sinB}=\left(\dfrac{a^2-c^}{2ac}\right)^2}

\mathsf{3-4\,sin^2B=\left(\dfrac{a^2-c^2}{2ac}\right)^2}

\mathsf{3-4(1-cos^2B)=\left(\dfrac{a^2-c^2}{2ac}\right)^2}

\mathsf{-1+4\,cos^2B=\left(\dfrac{a^2-c^2}{2ac}\right)^2}

\mathsf{4\,cos^2B=1+\left(\dfrac{a^2-c^2}{2ac}\right)^2}

\mathsf{Using,\;}

\boxed{\mathsf{COSINE\;FORMULA:\;cosB=\dfrac{c^2+a^2-b^2}{2ac}}}

\mathsf{4\left(\dfrac{c^2+a^2-b^2}{2ac}\right)^2=\dfrac{4a^2c^2+(a^2-c^2)^2}{4a^2c^2}}

\mathsf{\dfrac{2^2(c^2+a^2-b^2)^2}{4a^c^2}=\dfrac{4a^2c^2+a^2+c^2-2a^2c^2}{4a^2c^2}}

\mathsf{(2c^2+2a^2-2b^2)^2=(a^2+c^2)^2}

\mathsf{(2c^2+2a^2-2b^2)^2-(a^2+c^2)^2=0}

\mathsf{(2c^2+2a^2-2b^2+a^2+c^2)(2c^2+2a^2-2b^2-a^2-c^2)=0}

\mathsf{(3c^2+3a^2-2b^2)(c^2+a^2-2b^2)=0}

\implies\mathsf{3c^2+3a^2-2b^2=0\;\;(or)\;\;c^2+a^2-2b^2=0}

\implies\mathsf{a^2+c^2=2b^2}

\implies\mathsf{b^2-a^2=c^2-b^2}

\therefore\mathsf{a^2,b^2,c^2\;are\;in\;A.P}

\underline{\textsf{Find more:}}

In a triangle ABC,if acosB=bcosA then the triangle is which triangle​

https://brainly.in/question/12199661

If in a triangle abc angle a=pi/6 and b:c=2:sqrt3, find angle b

https://brainly.in/question/18930261

Prove that a square + b square minus c square by c square + a square minus b square is equal to tan b by tanc​

https://brainly.in/question/21645646

Similar questions